Let a and b be positive real numbers such that
1a1b1a+b=0
Find the value of (ba+ab)2.


Answer:

5

Step by Step Explanation:
  1. We are given,
    1a1b1a+b=0
    Let x=ba
    b=ax
  2. Now,
    1a1b1a+b=01a1ax1a+ax=01a(11x11+x)=01a(x(1+x)(1+x)xx(1+x))=01a(x+x21xxx(1+x))=01a(x2x1x(1+x))=0x2x1x(1+x)=0(a>0)x2x1=0x=1±1+42(1)x=1±52 Since a and b are positive, x > 0 x=1+52
  3. Now,
    (ba+ab)=(x+1x)2=(1+52+21+5)2=(1+52+21+5×1515)2=(1+52+2254)2=(1+5212+52)2=(5)2=5
  4. Hence, the value of (ba+ab)2 is 5.

You can reuse this answer
Creative Commons License
whatsapp logo
Chat with us