If x = a cosec θ sin ϕ, y = b cosec θ cos ϕ and z = c cot θ then prove that (x2a2+y2b2)=(1+z2c2).


Answer:


Step by Step Explanation:
  1. We are given that xa=cosec θ sin ϕ(i)yb=cosec θ cos ϕ(ii)zc=cot θ(iii)
  2. On squaring and adding (i) and (ii), we get (x2a2+y2b2)=cosec2 θ(sin2 ϕ+cos2 ϕ)=cosec2 θ[sin2 ϕ+cos2 ϕ=1]=(1+cot2 θ)[cosec2=1+cot2 θ]=(1+z2c2)[By equation (iii)]
  3. Hence,(x2a2+y2b2)=(1+z2c2).

You can reuse this answer
Creative Commons License